

HDV-003-016302

Seat No.

M. Sc. (Mathematics) (Sem. III) (CBCS) Examination November / December - 2017 MATH CMT 2002 : Example Analysis

MATH CMT - 3002 : Functional Analysis (Old Course)

Faculty Code: 003 Subject Code: 016302

Time: $2\frac{1}{2}$ Hours] [Total Marks: 70

Instructions: (1) Answer all questions.

- (2) Each question carries 14 marks.
- (3) The figures to the right indicate marks allotted to the question.
- 1 All are compulsory: (Each question carries 2 marks) 14
 - (a) True or false? Justify Dual of a Hilbert space is a Hilbert space.
 - (b) Define equivalent norms on a n.l. space.
 - (c) True or false? Justify $(l^{\infty}, \|\cdot\|_{\infty})$ has a Schauder basis.
 - (d) Give an example of a n.l. space which is not complete.
 - (e) Write the statement of Zorn's lemma and define sub linear functional.
 - (f) What is the meaning of the statement that the dual X' of X separates the points of X.
 - (g) If Y is closed subspace of a n.l. space X then give the definition of the induced norm on the quotient space X/Y.
- 2 Answer any two:

14

- (a) State and prove Minkowski's Inequality.
- 7 7
- (b) State without proof Open Mapping Theorem. Also prove that any two norms on a finite dimensional vector space X over K are equivalent.

	(c)	Give an example to show that a metric on a vector space X need not be induced by a norm on X , with justification.	7
3	All	are compulsory :	14
	(a)	State and prove Riesz lemma.	7
	(b)	Prove that if every absolutely convergent series in	7
		$(X, \ \cdot\)$ converges in $(X, \ \cdot\)$ then $(X, \ \cdot\)$ is a Banach	
		Space over K .	
		\mathbf{OR}	
3	All	are compulsory :	14
	(a)	State and prove closed graph theorem.	7
	(b)	Define Canonical mapping C from a n.l. space X to X ". Prove that $C: X \to X$ " is an isometry.	7
4	Ans	wer any two :	14
	(a)	State and prove Bessel's Inequality.	7
	(b)	Give an example of an Inner Product Space which is not a Hilbert Space with justification.	7
	(c)	State and prove the Hahn Banach spaces for n.l. Spaces over K .	7
5	Ans	wer any two :	14
	(a)	Prove that a Banach space X over K cannot have a countably infinite hamel basis.	7
	(b)	State and prove that characterization of finite dimensional n.l. spaces over K .	7
	(c)	Let X_1, X_2, \dots, X_n be a n.l. space over K then	7
		$\left(X_1 \times X_2 \times \dots \times X_n, \ \cdot\ \right)$ is Banach space iff X_i is a	
		Banach Space over K ; for every $i = 1, 2, \dots, n$.	
		Where $\ (x_1, x_2,, x_n)\ = \max \ x_i\ $ over <i>i</i> .	